Du bist nicht eingeloggt.

Login

Pass

Registrieren

Community
Szene & News
Locations
Impressum

Forum / Wissenschaft und Technik

stammfunktion wurzel x

  -1- -2- vorwärts >>>  
driveby - 35
Halbprofi (offline)

Dabei seit 01.2006
109 Beiträge
Geschrieben am: 28.04.2008 um 19:11 Uhr

hey leute, was ist denn die stammfunktin von wurzel x
Dalenia89 - 35
Profi (offline)

Dabei seit 03.2005
596 Beiträge

Geschrieben am: 28.04.2008 um 19:15 Uhr

2*x^3/2

Wissen ist Macht, nichts wissen macht auch nix^^

Bellahuahe - 36
Fortgeschrittener (offline)

Dabei seit 02.2008
62 Beiträge
Geschrieben am: 28.04.2008 um 19:15 Uhr

ich glaub 2/3 x hoch 3/2, da wurzel x = x hoch einhalb ist
-An-Dy- - 34
Champion (offline)

Dabei seit 12.2006
2143 Beiträge

Geschrieben am: 28.04.2008 um 19:15 Uhr

Klick mich

Erste seite die bei google kommt :rolleyes:

Meine Foto-Galerie: http://darkestsun.deviantart.com/gallery

Dalenia89 - 35
Profi (offline)

Dabei seit 03.2005
596 Beiträge

Geschrieben am: 28.04.2008 um 19:15 Uhr

Zitat von Dalenia89:

2*x^3/2

weil wurzel ja hoch ein halb is^^

Wissen ist Macht, nichts wissen macht auch nix^^

keppi_ - 32
Experte (offline)

Dabei seit 01.2008
1164 Beiträge
Geschrieben am: 28.04.2008 um 19:15 Uhr
Zuletzt editiert am: 28.04.2008 um 19:16 Uhr

Zitat von Bad_13:

Zitat von driveby:

hey leute, was ist denn die stammfunktin von wurzel x




google???

scheiß antwort -.-
wenn du shcon so mega cool bist und google vorschlägst, dann schreib auch was gescheites...-.-

[verlinkte Grafik wurde nicht gefunden]

das hab ich gefunden...
DjKoma - 39
Experte (offline)

Dabei seit 01.2006
1906 Beiträge

Geschrieben am: 28.04.2008 um 19:16 Uhr

((2*x^(3/2) ) /3) + C

Why is 6 afraid of 7? Because 7 8 9!

Barmonster - 41
Champion (offline)

Dabei seit 07.2005
3952 Beiträge

Geschrieben am: 28.04.2008 um 19:19 Uhr
Zuletzt editiert am: 28.04.2008 um 19:20 Uhr

Zitat von keppi_:

Zitat von Bad_13:

Zitat von driveby:

hey leute, was ist denn die stammfunktin von wurzel x




google???

scheiß antwort -.-
wenn du shcon so mega cool bist und google vorschlägst, dann schreib auch was gescheites...-.-

[verlinkte Grafik wurde nicht gefunden]

das hab ich gefunden...


grad nochmal gerettet, Junge ;-)

f'(x) ist die ABLEITUNG, also das genaue GEGENTEIL einer Stammfunktion

und wie das Posting über mir noch erwähnt hat: "+C" nicht vergessen! C kann dabei jedwede NICHT variable natürliche Zahl sein

Viele Leute sind verwirrt, wenn ein Satz anders endet als man Rübenmus!

Badi1408 - 35
Halbprofi (offline)

Dabei seit 03.2005
255 Beiträge
Geschrieben am: 28.04.2008 um 19:46 Uhr
Zuletzt editiert am: 28.04.2008 um 19:49 Uhr

Zitat:


und wie das Posting über mir noch erwähnt hat: "+C" nicht vergessen! C kann dabei jedwede NICHT variable natürliche Zahl sein


also ich hätt gsagt die additive Konstante C kann eine reelle Zahl sein
und bei der Flächenberechnung fällt se weg also c=0

>Hier könnte ihre Werbung stehen

Barmonster - 41
Champion (offline)

Dabei seit 07.2005
3952 Beiträge

Geschrieben am: 28.04.2008 um 19:51 Uhr

Zitat von Badi1408:

Zitat:


und wie das Posting über mir noch erwähnt hat: "+C" nicht vergessen! C kann dabei jedwede NICHT variable natürliche Zahl sein


also ich hätt gsagt die additive Konstante C kann eine reelle Zahl sein
und bei der Flächenberechnung fällt se weg also c=0


ups, reell wars, sorry, mein Fehler....is schon zu lang her ;-)

Viele Leute sind verwirrt, wenn ein Satz anders endet als man Rübenmus!

Ramrod69 - 43
Anfänger (offline)

Dabei seit 04.2008
7 Beiträge
Geschrieben am: 28.04.2008 um 19:52 Uhr

Erstmal ist die Stammfunktion die Funktion, welche nach erster Ableitung (erstes Derivat) zu deiner Zielfunktion führt. Das heißt du musst deine Zielfunktion ganz einfach integrieren oder wie manche es auch nennen "aufleiten".
Antwort: (2/3)*X^(3/2)+C ist dehalb korrekt.

thuemmer - 37
Profi (offline)

Dabei seit 11.2004
965 Beiträge

Geschrieben am: 28.04.2008 um 20:01 Uhr

Zitat von Badi1408:

Zitat:


und wie das Posting über mir noch erwähnt hat: "+C" nicht vergessen! C kann dabei jedwede NICHT variable natürliche Zahl sein


also ich hätt gsagt die additive Konstante C kann eine reelle Zahl sein
und bei der Flächenberechnung fällt se weg also c=0

Nein bei der Ableitung fällt die Konstante C raus, deshalb muss man sie bei der Stammfunktion berücksichtigen.

Chemiker haben für alles eine Lösung.

Ramrod69 - 43
Anfänger (offline)

Dabei seit 04.2008
7 Beiträge
Geschrieben am: 28.04.2008 um 20:12 Uhr

um es anschaulich zu formulieren:
C bestimmt/verschiebt die Position deiner Fläche im Raum! Ändert somit nichts an der Größe der Fläche selbst.
Badi1408 - 35
Halbprofi (offline)

Dabei seit 03.2005
255 Beiträge
Geschrieben am: 28.04.2008 um 20:17 Uhr

Zitat von thuemmer:

Zitat von Badi1408:

Zitat:


und wie das Posting über mir noch erwähnt hat: "+C" nicht vergessen! C kann dabei jedwede NICHT variable natürliche Zahl sein


also ich hätt gsagt die additive Konstante C kann eine reelle Zahl sein
und bei der Flächenberechnung fällt se weg also c=0

Nein bei der Ableitung fällt die Konstante C raus, deshalb muss man sie bei der Stammfunktion berücksichtigen.


die fläche die man integriert bleibt aber gleich wenn sich der
Graph verschiebt... und wieso sollte c ne natürliche und keine
reelle zahl sein?

>Hier könnte ihre Werbung stehen

Ramrod69 - 43
Anfänger (offline)

Dabei seit 04.2008
7 Beiträge
Geschrieben am: 28.04.2008 um 20:31 Uhr


Wer schreibt, dass es keine reelle Zahl ist? Natürlich kann C eine reelle Zahl sein, ist es sogar per Definition, da eine Fläche über natürlich Zahlen nur sehr "schwer" bzw. garnicht definiert werden kann!
ULmer18 - 33
Halbprofi (offline)

Dabei seit 12.2004
107 Beiträge
Geschrieben am: 29.04.2008 um 09:07 Uhr

Wieso eigentlich immer Integral = Fläche?
In erster Linie ist ein Integral eine Summe mit infinitisimaler Schrittweite, insofern spielt die Konstante allgemein immer eine Rolle
  -1- -2- vorwärts >>>
 

Forum / Wissenschaft und Technik

(c) 1999 - 2025 team-ulm.de - all rights reserved - hosted by ibTEC Team-Ulm

- Presse - Blog - Historie - Partner - Nutzungsbedingungen - Datenschutzerklärung - Jugendschutz -